Activities

Activity 4: Various Problems

For the following problems fill in the gaps on the proof, they are highlighted in blue. Any comment in brown shall be discussed with your classmates and resolved as a group.

1. Show that integration by parts can sometimes be applied to the "improper" integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a theorem, and prove it.) For instance, show that

$$
\int_{0}^{\infty} \frac{\cos x}{1+x} d x=\int_{0}^{\infty} \frac{\sin x}{(1+x)^{2}} d x
$$

Proof. It will be enough if we can show the following theorem
Theorem 1. Let $f(x)$ and $g(x)$ be continuously differentiable functions defined on $[a, \infty)$ such that $\lim _{b \rightarrow \infty} f(b) g(b)$ exists and the integral $\int_{a}^{\infty} f(x) g^{\prime}(x) d x$ converges. Then $\int_{a}^{\infty} f^{\prime}(x) g(x) d x$ converges and

$$
\int_{a}^{\infty} f^{\prime}(x) g(x) d x=\lim _{b \rightarrow \infty}[f(b) g(b)-f(a) g(a)]-\int_{a}^{\infty} f(x) g^{\prime}(x) d x
$$

Discuss why the hypothesis should be sufficient, and prove the theorem. Using the theorem check the equality for the example.
2. Let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be curves in the complex plane defined on [$0,2 \pi$] by

$$
\gamma_{1}(t)=e^{i t}, \quad \gamma_{2}(t)=e^{2 i t}, \quad \quad \gamma_{3}(t)=e^{2 \pi i t \sin \left(\frac{1}{t}\right)}
$$

Show that these curves have the same range, that γ_{1} and γ_{2} are rectifiable, that the length of γ_{1} is 2π, that the length of γ_{2} is 4π, and that γ_{3} is not rectifiable.

Proof. Notice that both γ_{1}, γ_{2} and γ_{3} have the same range, namely, their graph is the unit circle in the complex plane (check this). Now, for γ_{1} and γ_{2} the rectification is given by

$$
\begin{aligned}
& l\left(\gamma_{1}\right)=\int_{0}^{2 \pi}\left|\gamma_{1}^{\prime}(t)\right| d t=2 \pi \\
& l\left(\gamma_{2}\right)=\int_{0}^{2 \pi}\left|\gamma_{2}^{\prime}(t)\right| d t=4 \pi
\end{aligned}
$$

Now, we show that γ_{3} is not rectifiable. First notice that

$$
\int_{0}^{2 \pi}\left|\sin \left(\frac{1}{t}\right)-\frac{\cos \left(\frac{1}{t}\right)}{t}\right| d t \geq \int_{0}^{2 \pi}\left|\frac{\cos \left(\frac{1}{t}\right)}{t}\right| d t-2 \pi
$$

(why do you think we are trying to take this bound?). By using the substitution $u=\frac{1}{t}$ on the integral on the left, we see that it diverges (you have to show this). So we conclude that is not rectifiable (why?).

