Outlines

Homework 1

1. (5.2) Suppose $f^{\prime}(x)>0$ in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

$$
g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}
$$

Proof. To show that f is increasing take $a<s<t<b$ and use the mean value theorem on (s, t) then

$$
f(t)-f(s)=f^{\prime}(p)(t-c)>0
$$

where $p \in(s, t)$. The inverse g of f is continuous. Notice that if $f(x)=y$ and $f(u)=k$ with $x, u \in(a, b)$

$$
\frac{g(y)-g(k)}{y-k}-\frac{1}{f^{\prime}(x)}=\frac{x-u}{f(x)-f(u)}-\frac{1}{f^{\prime}(x)}=\frac{1}{\frac{f(x)-f(u)}{x-u}}-\frac{1}{f^{\prime}(x)} .
$$

Because the derivative is positive for all elements in (a, b) we have that

$$
\lim _{u \rightarrow x} \frac{1}{\frac{f(x)-f(u)}{x-u}}=\frac{1}{\lim _{u \rightarrow x} \frac{f(x)-f(u)}{x-u}}
$$

so that for any $\epsilon>0$ there is $\eta>0$ such that

$$
\left|\frac{g(y)-g(k)}{y-k}-\frac{1}{f^{\prime}(x)}\right|<\epsilon
$$

for any u with $|u-x|<\eta$. Since $|u-x|=|g(y)-g(k)|$ there is a $\delta>0$ such that if for k with $|y-k|<\delta$ we have

$$
\left|\frac{g(y)-g(k)}{y-k}-\frac{1}{f^{\prime}(x)}\right|<\epsilon
$$

2. (5.4) If

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0
$$

where C_{0}, \ldots, C_{n} are real constants, prove that the equation

$$
C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1} C_{n} x^{n}=0
$$

has at least one real root between 0 and 1 .

Proof. Consider

$$
f(x)=C_{0} x+\frac{C_{1} x^{2}}{2}+\cdots+\frac{C_{n-1} x^{n}}{n}+\frac{C_{n} x^{n+1}}{n+1} .
$$

By the mean value theorem you have that there is a $c \in[0,1]$ such that $f^{\prime}(c)=0$ (you have to check the hypothesis and check that the right hand side is indeed 0).
3. (5.6) Suppose
(a) f is continuous for $x \geq 0$,
(b) $f^{\prime}(x)$ exists for $x>0$,
(c) $f(0)=0$,
(d) f^{\prime} is monotonically increasing.

Put

$$
g(x)=\frac{f(x)}{x}
$$

and prove that g is monotonically increasing.
Proof. By (a) and (b) we have that f is continuous on $[0, t]$ and differentiable on $(0, t)$. Apply the mean value theorem to f on that interval. This will tell you by (c) and (d) that the derivative of g is positive (why?), and so it is monotonically increasing.
4. (5.8) Suppose f^{\prime} is continuous on $[a, b]$ and $\epsilon>0$. Prove that there exists $\delta>0$ such that

$$
\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right|<\epsilon
$$

whenever $0<|t-x|<\delta, a \leq x \leq b, a \leq t \leq b$. Does this hold for vector-valued functions too?

Proof. This is a consequence from the fact that f^{\prime} is uniformly continuous (it is continuous on a compact set) and the mean value theorem. Let $\epsilon>0$ and let $\delta>0$ be the δ you get from uniform continuity of f^{\prime}. Let $t, x \in[a, b]$ such that $0<|t-x|<\delta$, by the mean value theorem there is $u \in(t, x)$ (without loss of generality assume $x<t$) such that

$$
\frac{f(t)-f(x)}{t-x}=f^{\prime}(u)
$$

We know $|u-x|<|t-x|<\delta$ so by uniform continuity

$$
\left|f^{\prime}(u)-f^{\prime}(x)\right|=\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right|<\epsilon
$$

5. (5.9) Let f be a continuous real function on \mathbb{R}^{1}, of which it is known that $f^{\prime}(x)$ exists for all $x \neq 0$ and that $f^{\prime}(x) \rightarrow 3$ as $x \rightarrow 0$. Does it follow that $f^{\prime}(0)$ exists?

Proof. Yes, by L'Hopital's rule (Check).
6. (5.14) Let f be a differentiable real function defined in (a, b). Prove that f is convex if and only if f^{\prime} is monotonically increasing. Assume next that $f^{\prime \prime}(x)$ exists for every $x \in(a, b)$, and prove that f is convex if and only if $f^{\prime \prime}(x) \geq 0$ for all $x \in(a, b)$.

Proof. Let $x<y$ in (a, b). You can show that the inequality stating that f is convex on (x, y) can be rewritten (prove this) as

$$
\frac{f(y)-f(z)}{y-z} \geq \frac{f(z)-f(x)}{z-x}
$$

for $x<z<y$. By the mean value theorem on (x, z) and (z, y), and because f^{\prime} is increasing the latter inequality holds (why was this enough?). For the other direction you can use that f convex on $[a, b]$ implies

$$
\frac{f(t)-f(s)}{t-s} \leq \frac{f(u)-f(t)}{u-t} \leq \frac{f(v)-f(u)}{v-u}
$$

for every $a<s<t<u<v<b$. Taking the limit as $s \rightarrow t$ and the limit as $v \rightarrow u$ you get that f^{\prime} is increasing.
7. (5.19) Suppose f is defined in $(-1,1)$ and $f^{\prime}(0)$ exists. Suppose $-1<\alpha_{n}<\beta_{n}<$ $1, \alpha_{n} \rightarrow 0$, and $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Define the difference quotients

$$
D_{n}=\frac{f\left(\beta_{n}\right)-f\left(\alpha_{n}\right)}{\beta_{n}-\alpha_{n}}
$$

Prove the following statements:
(a) If $\alpha_{n}<0<\beta_{n}$, then $\lim D_{n}=f^{\prime}(0)$.
(b) If $0<\alpha_{n}<\beta_{n}$ and $\beta_{n} /\left(\beta_{n}-\alpha_{n}\right)$ is bounded, then $\lim D_{n}=f^{\prime}(0)$.
(c) If f^{\prime} is continuous in $(-1,1)$, then $\lim D_{n}=f^{\prime}(0)$.

Give an example in which f is differentiable in $(-1,1)$ and in which α_{n}, β_{n} tends to 0 in such a way that $\lim D_{n}$ exists but is different from $f^{\prime}(0)$.

Proof. (a) Show that

$$
D_{n}=\frac{\beta_{n}}{\beta_{n}-\alpha_{n}} \frac{f\left(\beta_{n}\right)-f(0)}{\beta_{n}}+\frac{-\alpha_{n}}{\beta_{n}-\alpha_{n}} \frac{f\left(\alpha_{n}\right)-f(0)}{\alpha_{n}}
$$

Let $\epsilon>0$, then because the derivative exists around 0 there is a $\delta>0$ and $N \in \mathbb{N}$ such that for all $n \geq N$ (why?)

$$
\left|\frac{f\left(\beta_{n}\right)-f(0)}{\beta_{n}}-f^{\prime}(0)\right|<\epsilon \quad\left|\frac{f\left(\alpha_{n}\right)-f(0)}{\alpha_{n}}-f^{\prime}(0)\right|<\epsilon .
$$

Now, for every $n / g e q N$

$$
\left|D_{n}-f^{\prime}(0)\right| \leq \frac{\epsilon \beta_{n}}{\beta_{n}-\alpha_{n}}-\frac{\alpha_{n} \epsilon}{\beta_{n}-\alpha_{n}}=\epsilon
$$

(why was the inequality true?)
(b) Let M be the bound for $\frac{\beta_{n}}{\beta_{n}-\alpha_{n}}$. Notice this bound also bounds $\frac{\alpha_{n}}{\beta_{n}-\alpha_{n}}$. Let $\epsilon>0$ and as before choose $N \in \stackrel{N}{\mathbb{N}}$ so that for $n \geq N$

$$
\left|\frac{f\left(\beta_{n}\right)-f(0)}{\beta_{n}}-f^{\prime}(0)\right|<\frac{\epsilon}{2 M} \quad\left|\frac{f\left(\alpha_{n}\right)-f(0)}{\alpha_{n}}-f^{\prime}(0)\right|<\frac{\epsilon}{2 M}
$$

Similarly to the last item, for every $n /$ geq N

$$
\left|D_{n}-f^{\prime}(0)\right| \leq \frac{\epsilon \beta_{n}}{2 M\left(\beta_{n}-\alpha_{n}\right)}+\frac{\alpha_{n} \epsilon}{2 M\left(\beta_{n}-\alpha_{n}\right)}<\epsilon
$$

(why was the inequality true?)
(c) Because f^{\prime} is continuous we can use the mean value theorem and find $\gamma_{n} \in\left(\alpha_{n}, \beta_{n}\right)$ so that $D_{n}=f^{\prime}\left(\gamma_{n}\right)$. Because $\gamma_{n} \rightarrow 0$ and f^{\prime} is continuous, then $f^{\prime}\left(\gamma_{n}\right) \rightarrow f^{\prime}(0)$.
Think of the second example of 5.6.
8. (5.26) Suppose f is differentiable on $[a, b], f(a)=0$, and there is a real number A such that $\left|f^{\prime}(x)\right| \leq A|f(x)|$ on $[a, b]$. Prove that $f(x)=0$ for all $x \in[a, b]$.

Proof. Let $x_{0}=a+\frac{1}{k_{0} A}$, where k is a positive integer that allows you to have $x_{0}<b$, and let M_{0} and M_{1} as in the hint of the problem. Then

$$
|f(x)| \leq M_{1}|x-a| \leq M_{0} A\left|x_{0}-a\right|=\frac{M_{0}}{k}
$$

for any $x \in\left(a, x_{0}\right)$. This implies that $M_{0} \leq \frac{1}{k} M_{0}$, so $M_{0}=0$. We now do the same for $x_{1}=x_{0}+\frac{1}{k A}$. In a finite number of steps, $b<x_{n}+\frac{1}{k_{n} A}$ and we will be done.

Disclaimer: Some of this solutions have been taken from some outside resources, which will not be cited so that students do not find them. If you are interested in knowing where I got the solutions from please e-mail me.

