
Outlines

Homework 1

1. (5.2) Suppose f ′(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g
be its inverse function. Prove that g is differentiable, and that

g′ (f(x)) =
1

f ′(x)
.

Proof. To show that f is increasing take a < s < t < b and use the mean value theorem
on (s, t) then

f(t)− f(s) = f ′(p)(t− c) > 0

where p ∈ (s, t). The inverse g of f is continuous. Notice that if f(x) = y and f(u) = k
with x, u ∈ (a, b)

g(y)− g(k)

y − k
− 1

f ′(x)
=

x− u
f(x)− f(u)

− 1

f ′(x)
=

1
f(x)−f(u)

x−u

− 1

f ′(x)
.

Because the derivative is positive for all elements in (a, b) we have that

lim
u→x

1
f(x)−f(u)

x−u

=
1

limu→x
f(x)−f(u)

x−u

so that for any ε > 0 there is η > 0 such that∣∣∣∣g(y)− g(k)

y − k
− 1

f ′(x)

∣∣∣∣ < ε

for any u with |u − x| < η. Since |u − x| = |g(y) − g(k)| there is a δ > 0 such that if
for k with |y − k| < δ we have∣∣∣∣g(y)− g(k)

y − k
− 1

f ′(x)

∣∣∣∣ < ε

.

2. (5.4) If

C0 +
C1

2
+ · · ·+ Cn−1

n
+

Cn
n+ 1

= 0

where C0, . . . , Cn are real constants, prove that the equation

C0 + C1x+ · · ·+ Cn−1x
n−1Cnx

n = 0

has at least one real root between 0 and 1.

Proof. Consider

f(x) = C0x+
C1x

2

2
+ · · ·+ Cn−1x

n

n
+
Cnx

n+1

n+ 1
.

By the mean value theorem you have that there is a c ∈ [0, 1] such that f ′(c) = 0 (you
have to check the hypothesis and check that the right hand side is indeed 0).

3. (5.6) Suppose
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(a) f is continuous for x ≥ 0,

(b) f ′(x) exists for x > 0,

(c) f(0) = 0,

(d) f ′ is monotonically increasing.

Put

g(x) =
f(x)

x

and prove that g is monotonically increasing.

Proof. By (a) and (b) we have that f is continuous on [0, t] and differentiable on (0, t).
Apply the mean value theorem to f on that interval. This will tell you by (c) and (d)
that the derivative of g is positive (why?), and so it is monotonically increasing.

4. (5.8) Suppose f ′ is continuous on [a, b] and ε > 0. Prove that there exists δ > 0 such
that ∣∣∣∣f(t)− f(x)

t− x
− f ′(x)

∣∣∣∣ < ε

whenever 0 < |t − x| < δ, a ≤ x ≤ b, a ≤ t ≤ b. Does this hold for vector-valued
functions too?

Proof. This is a consequence from the fact that f ′ is uniformly continuous (it is con-
tinuous on a compact set) and the mean value theorem. Let ε > 0 and let δ > 0 be the
δ you get from uniform continuity of f ′. Let t, x ∈ [a, b] such that 0 < |t− x| < δ, by
the mean value theorem there is u ∈ (t, x) (without loss of generality assume x < t)
such that

f(t)− f(x)

t− x
= f ′(u).

We know |u− x| < |t− x| < δ so by uniform continuity

|f ′(u)− f ′(x)| =
∣∣∣∣f(t)− f(x)

t− x
− f ′(x)

∣∣∣∣ < ε.

5. (5.9) Let f be a continuous real function on R1, of which it is known that f ′(x) exists
for all x 6= 0 and that f ′(x)→ 3 as x→ 0. Does it follow that f ′(0) exists?

Proof. Yes, by L’Hopital’s rule (Check).

6. (5.14) Let f be a differentiable real function defined in (a, b). Prove that f is convex
if and only if f ′ is monotonically increasing. Assume next that f ′′(x) exists for every
x ∈ (a, b), and prove that f is convex if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

Proof. Let x < y in (a, b). You can show that the inequality stating that f is convex
on (x, y) can be rewritten (prove this) as

f(y)− f(z)

y − z
≥ f(z)− f(x)

z − x

for x < z < y. By the mean value theorem on (x, z) and (z, y), and because f ′ is
increasing the latter inequality holds (why was this enough?). For the other direction
you can use that f convex on [a, b] implies

f(t)− f(s)

t− s
≤ f(u)− f(t)

u− t
≤ f(v)− f(u)

v − u

for every a < s < t < u < v < b. Taking the limit as s→ t and the limit as v → u you
get that f ′ is increasing.
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7. (5.19) Suppose f is defined in (−1, 1) and f ′(0) exists. Suppose −1 < αn < βn <
1, αn → 0, and βn → 0 as n→∞. Define the difference quotients

Dn =
f(βn)− f(αn)

βn − αn
.

Prove the following statements:

(a) If αn < 0 < βn, then limDn = f ′(0).

(b) If 0 < αn < βn and βn/(βn − αn) is bounded, then limDn = f ′(0).

(c) If f ′ is continuous in (−1, 1), then limDn = f ′(0).

Give an example in which f is differentiable in (−1, 1) and in which αn, βn tends to 0
in such a way that limDn exists but is different from f ′(0).

Proof. (a) Show that

Dn =
βn

βn − αn
f(βn)− f(0)

βn
+
−αn

βn − αn
f(αn)− f(0)

αn
.

Let ε > 0, then because the derivative exists around 0 there is a δ > 0 and N ∈ N
such that for all n ≥ N (why?)∣∣∣∣f(βn)− f(0)

βn
− f ′(0)

∣∣∣∣ < ε

∣∣∣∣f(αn)− f(0)

αn
− f ′(0)

∣∣∣∣ < ε.

Now, for every n/geqN

|Dn − f ′(0)| ≤ εβn
βn − αn

− αnε

βn − αn
= ε.

(why was the inequality true?)

(b) Let M be the bound for βn
βn−αn

. Notice this bound also bounds αn

βn−αn
. Let ε > 0

and as before choose N ∈ N so that for n ≥ N∣∣∣∣f(βn)− f(0)

βn
− f ′(0)

∣∣∣∣ < ε

2M

∣∣∣∣f(αn)− f(0)

αn
− f ′(0)

∣∣∣∣ < ε

2M
.

Similarly to the last item, for every n/geqN

|Dn − f ′(0)| ≤ εβn
2M(βn − αn)

+
αnε

2M(βn − αn)
< ε.

(why was the inequality true?)

(c) Because f ′ is continuous we can use the mean value theorem and find γn ∈ (αn, βn)
so that Dn = f ′(γn). Because γn → 0 and f ′ is continuous, then f ′(γn)→ f ′(0).

Think of the second example of 5.6.

8. (5.26) Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number A such
that |f ′(x)| ≤ A|f(x)| on [a, b]. Prove that f(x) = 0 for all x ∈ [a, b].

Proof. Let x0 = a + 1
k0A

, where k is a positive integer that allows you to have x0 < b,
and let M0 and M1 as in the hint of the problem. Then

|f(x)| ≤M1|x− a| ≤M0A|x0 − a| =
M0

k

for any x ∈ (a, x0). This implies that M0 ≤ 1
k
M0, so M0 = 0. We now do the same for

x1 = x0 + 1
kA

. In a finite number of steps, b < xn + 1
knA

and we will be done.

Disclaimer: Some of this solutions have been taken from some outside resources, which will
not be cited so that students do not find them. If you are interested in knowing where I got
the solutions from please e-mail me.
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