
Outlines

Homework 2

1. (5.11): Suppose f is defined in a neighborhood of x, and suppose f ′(x) exists. Show
that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x).

Show that the limit may exist even if f ′′(x) does not.

Proof. By L’Hopital’s rule, we have

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= lim

h→0

f ′(x+ h)− f ′(x− h)

2h

= lim
h→0

f ′(x+ h)− f ′(x)

2h
+ lim

h→0

f ′(x− h)− f ′(x)

2h
= f ′′(x).

2. (5.15): Suppose a ∈ R1, f is twice-differentiable real function on (a,∞), andM0,M1,M2

are the least upper bounds of |f(x)|, |f ′(x)|, |f ′′(x)|, respectively, on (a,∞). Prove that

M2
1 ≤ 4M0M2.

Does the inequality hold for vector-valued functions too?

Proof. For the case where M0 = M2 = +∞ the inequality holds. Assume that both
M0 and M2 are finite. What we want to show is

|f ′(x)| ≤ 2
√
M0M2

for all x > a. We can further assume that M2 6= 0, since in that case f is a linear
function which is bounded only when f is a constant. Hence, we can assume that

0 < M0,M2∞. Following the hint we need to choose h =
√

M0

M2
, and we obtain

|f ′(x)| ≤ 2
√
M0M2,

which is what we want. For equality you just need to follow the hint. The result
also holds for vector valued functions (Here you just need to define a real valued
function that depends on f , may be the dot product with the unitary vector defined
by u = f ′(x0)

|f ′(x0)| where x0 > a where a < M1. )

3. (5.17): Suppose f is a real, three times differentiable function on [−1, 1], such that

f(−1) = 0, f(0) =0, f(1) = 1, f ′(0) = 0.

Prove that f (3)(x) ≥ 3 for some x ∈ (−1, 1).

Proof. Use Taylor’s formula for −1 and 1, then there are s, t ∈ (−1, 1) such that

f(1)− f(−1) =
f (3)(s) + f (3)(t)

6

(Check why the last equality is true) which implies f (3)(s) + f (3)(t) = 6.
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4. (5.22): Suppose f is a real function on (−∞,∞). Call x a fixed point if f(x) = x.

(a) If f is differentiable and f ′(t) 6= 1 for every real t, prove that f has at most one
fixed point.

(b) Show that the function f defined by

f(t) = t+
1

1 + et

has no fixed point, although 0 < f ′(t) < 1 for all real t.

(c) However, if there is a constant A < 1 such that |f ′(t)| ≤ A for all real t, prove
that a fixed point x of f exists, and that x = limxn, where x1 is an arbitrary real
number and xn+1 = f(xn) for every n ≥ 1.

(d) Show that the process described in (c) can be visualized by the zig-zag path

(x1, x2)→ · · · → (x3, x4)→

Proof.

(a) Suppose that there are two fixed points x < y and f ′(t) 6= 1 for all t. By the
Mean Value Theorem on (x, y) we have that for some k ∈ (x, y)

y − x = f(y)− f(x) = f ′(k)(x− y)

which leads to f ′(k) = 1, a contradiction. We conclude there is only one fixed
point.

(b) Try to set up f(t) = t, you arrive to a contradiction (why?). By computing the
derivative we see that f ′(x) 6= 1 for all x in the domain.(Does this contradict the
last item?)

(c) Choose {xn} as established in the problem, we will show that the sequence is a
Cauchy sequence: we know

|xn − xm| ≤
n∑

i=m

|xi − xi−1|

for every n > m > N for some N . Furthermore, because f ′ is bounded, by the
Mean Value Theorem applied to (xi−1, xi) we have

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ A|xn − xn−1|≤An−1|x2 − x1|

for n ≥ 1. Therefore,

|xn − xm|≤|x2 − x1|
(∑

Ai−2
)

<
|x2 − x1|Am−1

1− A

≤ |x2 − x1|A
N

1− A
.

AsN goes to infinity this quantity goes to 0 and so {xn} is Cauchy and it converges
to some x. This x is a fixed point by continuity of f (check this).

(d) Draw the sequence in the plane.

5. (6.1): Suppose α increases on [a, b], a ≤ x0 ≤ b, α is continuous at x0, f(x0) = 1, and
f(x) = 0 if x 6= x0. Prove that f ∈ R(α) and that

∫
f dα = 0.
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Proof. We know this function is always 0, except at the point x0. Let ε > 0, we know
there exists δ such that

|x− x0| < δ ⇒ |α(x)− α(x0)| <
ε

2
.

Now, let a = t0 ≤ t1 ≤ · · · tn = b be a partition of [a, b]. We know that there is an i
such that ti−1 ≤ x0 ≤ ti+1 (it could be that x0 = ti so it is at most at two elements of
the partition). Now, notice that for any ai ∈ [ti−1, ti] we have that∣∣∣∑ f(ai) (α(ti)− α(ti−1))

∣∣∣≤f(ai+1) (α(ti+1)− α(ti)) + f(ai) (α(ti)− α(ti−1))

≤ α(ti+1)− α(ti−1)

≤ε.

Because this is true for arbitrary ai, we have that f ∈ R and
∫
f dα = 0. Why do we

get this?

6. (6.2): Suppose f ≥ 0, f is continuous on [a, b], and
∫ b
a
f(x) dx = 0. Prove that f(x) = 0

for all x ∈ [a, b].

Proof. Suppose that there is x0 ∈ [a, b] such that f(x0) 6= 0. Because f(x) is continuous

on [a, b] and f(x0)
2

> 0, we know there is a δ > 0 for which

|f(x0)− f(x)| < f(x0)

2

for all x ∈ [a, b] with |x− x0| < δ. Now, consider η = min(x0 − a, b− x0, δ) and let

I =

{
[x0 − η, x] η ∈ [a, b],

[x0, x0 + η] otherwise.

Why do you think we chose η in this way? By construction, I⊂[a, b] and

f(x0) + (f(x)− f(x0)) ≥ f(x)− |f(x)− f(x0)| >
f(x0)

2

for all x ∈ I. Define

f1(x) =

{
f(x), x ∈ I,
0, x 6∈ I.

f2(x) =

{
f(x), x 6∈ I,
0, x ∈ I.

These two function are non-negative, bounded and continuous possibly at every point
(where do you think it could be discontinuous?), which means that they are both
Riemann-integrable. We know ∫ b

a

f1(x) dx≥η ε
2

and ∫ b

a

f2(x) dx≥0.

So that, ∫ b

a

f(x) dx>0

leading to a contradiction. To see the last inequality you might want to express f as
a sum of the two functions we constructed.

7. (6.3): Define three functions β1, β2, β3 as follows: βj(x) = 0 if x < 0, βj(x) = 1 if x > 0
for all j; and β1(0) = 0, β2(0) = 1, β3(0) = 1

2
. Let f be a bounded function on [−1, 1].

(a) Prove that f ∈ R(β1) if and only if f(0+) = f(0) and that then∫
f dβ1 = f(0).
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(b) State and prove a similar result for β2.

(c) Prove that f ∈ R(β3) if and only if f is continuous at 0.

(d) If f is continuous at 0 prove that∫
f dβ1 =

∫
f dβ2 =

∫
f dβ3 = f(0).

Proof. Let t0 < t1 < · · · < tn be a partition of any interval containing 0, and without
loss of generality assume that tk = 0 for some k ≤ n (why can I do this?). With this
our Riemann-Stieltjes sums (upper and lower) are: for j = 1, Mk and mk; for j = 2
they will be Mk−1, and mk−1; and for j = 3 they will be Mk−1+Mk−2

2
and mk−1+mk

2
,

respectively.

(a) By definition we have that mk ≤ f(x) ≤ Mk for every x ∈ [0, tk+1]. That means
that the sets of upper and lower sums are arbitrarily near to each other if and
only if Mk −mk < ε. If such partition exists let δ = tk+1. Then

|f(x)− f(0)| ≤Mk −mk < ε

for x ∈ (0, δ), which implies

lim
x→0+

f(x) = f(0).

Conversely, if limx→0+ f(x) = f(0) then we know there is a δ > 0 such that
|f(x) − f(0)| < ε for every |x| < δ. Take a partition where tk = 0 and tk+1 = δ.
Notice that by what we just showed we proved that the Riemann sums differ from
f(0) by less than ε (why?) and so∫

f dβ1 = f(0).

(b) Notice f ∈ R(β2) if and only if limx→0− f(x) = f(0). If this holds, then
∫
fdβ2 =

f(0). The proof is almost identical to the one in the last item.

(c) In this case our Riemann-Stieltjes sum differ by

(Mk −mk) + (Mk−1 −mk−1)

2
.

Let ε > 0, there is a partition containing 0 for which this difference is less than
ε
2
. Let δ = min(tk+1 − tk−1). Then, for x ∈ (−δ, δ) we have

|f(x)− f(0)|≤max

(
Mk −mk

2
,
Mk−1 −mk−1

2

)
≤Mk −mk +Mk−1 −mk−1 < ε,

showing that f is continuous at 0. As before,∫
f dβ3 = f(0).

(d) It follows from the last three items.

8. (6.4): If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that f 6∈ R on
[a, b] for any a < b.

Proof. Every upper Riemann sum equals b− a, and every lower Riemann sum equals
0. why is this enough?

Disclaimer: Some of these solutions have been taken from some outside sources, which will
not be cited so that students do not find them. If you are interested in knowing where I got
the solutions from please e-mail me.

4


