Outlines

Homework 2

1. (5.11): Suppose f is defined in a neighborhood of x, and suppose f’(x) exists. Show

that
S B+ = h) — 2/ ()
h—0 h?

= f"(x).

Show that the limit may exist even if f”(z) does not.

Proof. By L’Hopital’s rule, we have
oo S ) fe =) = 2f(@) et h) = e b)

h—0 h2 h—0 2h
i SEER P b = )
h—0 2h h—0 2h
_ f”(x).

]

2. (5.15): Suppose a € R!, f is twice-differentiable real function on (a, 00), and My, My, My
are the least upper bounds of |f(x)|, |f'(x)|, | f”(z)|, respectively, on (a, c0). Prove that

M? < 4MyMs.
Does the inequality hold for vector-valued functions too?

Proof. For the case where My = My = 400 the inequality holds. Assume that both
My and M, are finite. What we want to show is

|/ ()] <2/ MyM,

for all x > a. We can further assume that M, # 0, since in that case f is a linear
function which is bounded only when f is a constant. Hence, we can assume that

0 < My, Myoo. Following the hint we need to choose h = ,/Mg, and we obtain

M:
[ (2)] < 2/ MoMs,

which is what we want. For equality you just need to follow the hint. The result
also holds for vector valued functions (Here you just need to define a real valued
function that depends on f, may be the dot product with the unitary vector defined

r/ .
L) where xo > a where a < M;. ) ]

])'\' = f'(zo)

3. (5.17): Suppose f is a real, three times differentiable function on [—1, 1], such that
f(=1)=0, f(0) =0, f) =1, f'(0)=0.
Prove that ) (x) > 3 for some x € (—1,1).

Proof. Use Taylor’s formula for —1 and 1, then there are s, € (—1, 1) such that

O (s)+ fO(¢
71) = () = ST
(Check why the last equality is true) which implies f®)(s) + f®)(¢) = 6. O
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4. (5.22): Suppose f is a real function on (—oo,00). Call z a fized point if f(z) = .

(a)
(b)

()

(d)

If f is differentiable and f’(¢) # 1 for every real ¢, prove that f has at most one
fixed point.

Show that the function f defined by

1
f(t):t+1+et

has no fixed point, although 0 < f’(t) < 1 for all real ¢.

However, if there is a constant A < 1 such that |f'(t)| < A for all real ¢, prove
that a fixed point z of f exists, and that = lim x,,, where x; is an arbitrary real
number and z,41 = f(z,) for every n > 1.

Show that the process described in (c) can be visualized by the zig-zag path

({L‘l,aig) — s — <£L'3,ZL‘4) —

Proof.

(a)

()

Suppose that there are two fixed points x < y and f(t) # 1 for all ¢. By the
Mean Value Theorem on (x,y) we have that for some k € (z,y)

y—z=fly) - flz)=[fF)(z-y)
which leads to f'(k) = 1, a contradiction. We conclude there is only one fixed
point.

Try to set up f(t) = t, you arrive to a contradiction (why?”). By computing the
derivative we see that f/'(z) # 1 for all z in the domain.(Does this contradict the
last item?)

Choose {z,} as established in the problem, we will show that the sequence is a
Cauchy sequence: we know

n
(T — ] < |15 — 3]
i=m

for every n > m > N for some N. Furthermore, because [’ is bounded, by the
Mean Value Theorem applied to (z;_1,x;) we have

Tt — @n| = [f(2n) = [(#n1)] < Ay — 2| <A g — 24

for n > 1. Therefore,

Ty — Tp| <|z2 — 1] (Z Ai’2>
|I2 — T |Am—l
1—A
|y — 1] AN
- 1-—A
As N goes to infinity this quantity goes to 0 and so {x,, } is Cauchy and it converges
to some z. This z is a fixed point by continuity of f (check this).

Draw the sequence in the plane.

]

5. (6.1): Suppose « increases on [a,b], a < xy < b, v is continuous at zg, f(z9) = 1, and
f(z) =0if  # 2. Prove that f € R(a) and that [ fda = 0.



Proof. We know this function is always 0, except at the point xy. Let € > 0, we know
there exists o such that

1z — 20| < 6 = |a(z) — alz)] < %

Now, let a =ty < t; < ---t, = b be a partition of [a,b]. We know that there is an i
such that t;_y < zg < t;5; (it could be that xy = t; so it is at most at two elements of
the partition). Now, notice that for any a; € [t;_1,;] we have that

‘Z flai) (a(t) — a(ti-i)|<f(aiw) (a(tivr) — a(ts) + f(ai) (a(t) — a(ti-1))
< aftipr) — afti-1)
<e.

Because this is true for arbitrary a;, we have that f € R and [ fda =0. Why do we
get this? ]

. (6.2): Suppose f > 0, f is continuous on [a, b], and f:f(a:) dx = 0. Prove that f(x) =0
for all = € [a, b].

Proof. Suppose that there is z € [a, b] such that f(zo) # 0. Because f(x) is continuous
on [a,b] and @ > 0, we know there is a 6 > 0 for which

flzo)

o) = ()] < 25

for all = € [a,b] with |z — x¢| < 6. Now, consider n = min(xy — a,b — xo,d) and let

I = [%—mx] ne [aabL
[0, 9 +n] otherwise.

Why do you think we chose 7 in this way? By construction, IC[a, b] and

f(x0)

Flwo) + (f(2) = flz0)) 2 fl2) = |f(2) = flzo)| > =5

for all x € I. Define

) f=), xel, ) f@), &I,
file) = {0, vl fa@) = {0, rel

These two function are non-negative, bounded and continuous possibly at every point
(where do you think it could be discontinuous?), which means that they are both
Riemann-integrable. We know

and

So that,
b
/ f(z)dx>0

leading to a contradiction. To sce the last inequality vou might want to express [ as
a sum of the two functions we constructed. O

. (6.3): Define three functions f, 52, B3 as follows: f;(z) =0ifx <0, fj(z) =1if 2 > 0
for all j; and 3;(0) = 0, 52(0) = 1, 33(0) = 3. Let f be a bounded function on [—1,1].

(a) Prove that f € R(f3,) if and only if f(0+) = f(0) and that then

[ +a5.= 10
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(b)
()
()

State and prove a similar result for .
Prove that f € R(f3) if and only if f is continuous at 0.

If f is continuous at 0 prove that

[ ras= [ gas= [ ras = so.

Proof. Let tg < t; < --- <1, be a partition of any interval containing 0, and without
loss of generality assume that ¢, = 0 for some k& < n (why can | do this?). With this
our Riemann-Stieltjes sums (upper and lower) are: for j = 1, My and my; for j = 2

they will be M;_1, and my_1; and for j = 3 they will be

My 1+Mp— -1t
k12 1c2andm1c12mk7

respectively.

(a)

(d)

By definition we have that my < f(z) < My for every = € [0,tx4+1]. That means
that the sets of upper and lower sums are arbitrarily near to each other if and
only if M}y — my < e. If such partition exists let 6 = ;1. Then

|f(x) = fO)] < My, —my, < e
for x € (0,0), which implies

lim f(z) = f(0).

r—0+

Conversely, if lim, ,o; f(z) = f(0) then we know there is a 6 > 0 such that
|f(z) — f(0)] < € for every |z| < 6. Take a partition where ¢, = 0 and tx41 = 6.
Notice that by what we just showed we proved that the Riemann sums differ from
f(0) by less than € (why”) and so

[ tas.= 10

Notice f € R(fs) if and only if lim,_o_ f(z) = f(0). If this holds, then [ fdfBs =
f(0). The proof is almost identical to the one in the last item.

In this case our Riemann-Stieltjes sum differ by

(M, — my) + (My—1 — my—1)
5 .

Let € > 0, there is a partition containing 0 for which this difference is less than
5. Let 6 = min(ty41 — tx—1). Then, for 2 € (=9,9) we have

£() — £(0)]< max (Mk o Moot~ m,”)

< My —my + My —my—q <€,

showing that f is continuous at 0. As before,
[ #asa=100)

It follows from the last three items.

]

8. (6.4): If f(x) =0 for all irrational x, f(x) = 1 for all rational x, prove that f &€ R on
la, b] for any a < b.

Proof. Every upper Riemann sum equals b — a, and every lower Riemann sum equals
0. why is this enough? O

Disclaimer: Some of these solutions have been taken from some outside sources, which will
not be cited so that students do not find them. If you are interested in knowing where I got
the solutions from please e-mail me.



