Outlines

Homework 2

1. (5.11): Suppose f is defined in a neighborhood of x, and suppose $f^{\prime}(x)$ exists. Show that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x) .
$$

Show that the limit may exist even if $f^{\prime \prime}(x)$ does not.
Proof. By L'Hopital's rule, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}} & =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x-h)}{2 h} \\
& =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{2 h}+\lim _{h \rightarrow 0} \frac{f^{\prime}(x-h)-f^{\prime}(x)}{2 h} \\
& =f^{\prime \prime}(x) .
\end{aligned}
$$

2. (5.15): Suppose $a \in \mathbb{R}^{1}, f$ is twice-differentiable real function on (a, ∞), and M_{0}, M_{1}, M_{2} are the least upper bounds of $|f(x)|,\left|f^{\prime}(x)\right|,\left|f^{\prime \prime}(x)\right|$, respectively, on (a, ∞). Prove that

$$
M_{1}^{2} \leq 4 M_{0} M_{2}
$$

Does the inequality hold for vector-valued functions too?
Proof. For the case where $M_{0}=M_{2}=+\infty$ the inequality holds. Assume that both M_{0} and M_{2} are finite. What we want to show is

$$
\left|f^{\prime}(x)\right| \leq 2 \sqrt{M_{0} M_{2}}
$$

for all $x>a$. We can further assume that $M_{2} \neq 0$, since in that case f is a linear function which is bounded only when f is a constant. Hence, we can assume that $0<M_{0}, M_{2} \infty$. Following the hint we need to choose $h=\sqrt{\frac{M_{0}}{M_{2}}}$, and we obtain

$$
\left|f^{\prime}(x)\right| \leq 2 \sqrt{M_{0} M_{2}}
$$

which is what we want. For equality you just need to follow the hint. The result also holds for vector valued functions (Here you just need to define a real valued function that depends on f, may be the dot product with the unitary vector defined by $u=\frac{f^{\prime}\left(x_{0}\right)}{\left|f^{\prime}\left(x_{0}\right)\right|}$ where $x_{0}>a$ where $a<M_{1}$.)
3. (5.17): Suppose f is a real, three times differentiable function on $[-1,1]$, such that

$$
f(-1)=0, \quad f(0)=0, \quad f(1)=1, \quad f^{\prime}(0)=0
$$

Prove that $f^{(3)}(x) \geq 3$ for some $x \in(-1,1)$.
Proof. Use Taylor's formula for -1 and 1 , then there are $s, t \in(-1,1)$ such that

$$
f(1)-f(-1)=\frac{f^{(3)}(s)+f^{(3)}(t)}{6}
$$

(Check why the last equality is true) which implies $f^{(3)}(s)+f^{(3)}(t)=6$.
4. (5.22): Suppose f is a real function on $(-\infty, \infty)$. Call x a fixed point if $f(x)=x$.
(a) If f is differentiable and $f^{\prime}(t) \neq 1$ for every real t, prove that f has at most one fixed point.
(b) Show that the function f defined by

$$
f(t)=t+\frac{1}{1+e^{t}}
$$

has no fixed point, although $0<f^{\prime}(t)<1$ for all real t.
(c) However, if there is a constant $A<1$ such that $\left|f^{\prime}(t)\right| \leq A$ for all real t, prove that a fixed point x of f exists, and that $x=\lim x_{n}$, where x_{1} is an arbitrary real number and $x_{n+1}=f\left(x_{n}\right)$ for every $n \geq 1$.
(d) Show that the process described in (c) can be visualized by the zig-zag path

$$
\left(x_{1}, x_{2}\right) \rightarrow \cdots \rightarrow\left(x_{3}, x_{4}\right) \rightarrow
$$

Proof.
(a) Suppose that there are two fixed points $x<y$ and $f^{\prime}(t) \neq 1$ for all t. By the Mean Value Theorem on (x, y) we have that for some $k \in(x, y)$

$$
y-x=f(y)-f(x)=f^{\prime}(k)(x-y)
$$

which leads to $f^{\prime}(k)=1$, a contradiction. We conclude there is only one fixed point.
(b) Try to set up $f(t)=t$, you arrive to a contradiction (why?). By computing the derivative we see that $f^{\prime}(x) \neq 1$ for all x in the domain. (Does this contradict the last item?)
(c) Choose $\left\{x_{n}\right\}$ as established in the problem, we will show that the sequence is a Cauchy sequence: we know

$$
\left|x_{n}-x_{m}\right| \leq \sum_{i=m}^{n}\left|x_{i}-x_{i-1}\right|
$$

for every $n>m>N$ for some N. Furthermore, because f^{\prime} is bounded, by the Mean Value Theorem applied to $\left(x_{i-1}, x_{i}\right)$ we have

$$
\left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \leq A\left|x_{n}-x_{n-1}\right| \leq A^{n-1}\left|x_{2}-x_{1}\right|
$$

for $n \geq 1$. Therefore,

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq\left|x_{2}-x_{1}\right|\left(\sum A^{i-2}\right) \\
& <\frac{\left|x_{2}-x_{1}\right| A^{m-1}}{1-A} \\
& \leq \frac{\left|x_{2}-x_{1}\right| A^{N}}{1-A}
\end{aligned}
$$

As N goes to infinity this quantity goes to 0 and so $\left\{x_{n}\right\}$ is Cauchy and it converges to some x. This x is a fixed point by continuity of f (check this).
(d) Draw the sequence in the plane.
5. (6.1): Suppose α increases on $[a, b], a \leq x_{0} \leq b, \alpha$ is continuous at $x_{0}, f\left(x_{0}\right)=1$, and $f(x)=0$ if $x \neq x_{0}$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d \alpha=0$.

Proof. We know this function is always 0 , except at the point x_{0}. Let $\epsilon>0$, we know there exists δ such that

$$
\left|x-x_{0}\right|<\delta \Rightarrow\left|\alpha(x)-\alpha\left(x_{0}\right)\right|<\frac{\epsilon}{2}
$$

Now, let $a=t_{0} \leq t_{1} \leq \cdots t_{n}=b$ be a partition of $[a, b]$. We know that there is an i such that $t_{i-1} \leq x_{0} \leq t_{i+1}$ (it could be that $x_{0}=t_{i}$ so it is at most at two elements of the partition). Now, notice that for any $a_{i} \in\left[t_{i-1}, t_{i}\right]$ we have that

$$
\begin{aligned}
\left|\sum f\left(a_{i}\right)\left(\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right)\right| & \leq f\left(a_{i+1}\right)\left(\alpha\left(t_{i+1}\right)-\alpha\left(t_{i}\right)\right)+f\left(a_{i}\right)\left(\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right) \\
& \leq \alpha\left(t_{i+1}\right)-\alpha\left(t_{i-1}\right) \\
& \leq \epsilon
\end{aligned}
$$

Because this is true for arbitrary a_{i}, we have that $f \in \mathcal{R}$ and $\int f d \alpha=0$. Why do we get this?
6. (6.2): Suppose $f \geq 0, f$ is continuous on $[a, b]$, and $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.

Proof. Suppose that there is $x_{0} \in[a, b]$ such that $f\left(x_{0}\right) \neq 0$. Because $f(x)$ is continuous on $[a, b]$ and $\frac{f\left(x_{0}\right)}{2}>0$, we know there is a $\delta>0$ for which

$$
\left|f\left(x_{0}\right)-f(x)\right|<\frac{f\left(x_{0}\right)}{2}
$$

for all $x \in[a, b]$ with $\left|x-x_{0}\right|<\delta$. Now, consider $\eta=\min \left(x_{0}-a, b-x_{0}, \delta\right)$ and let

$$
I= \begin{cases}{\left[x_{0}-\eta, x\right]} & \eta \in[a, b] \\ {\left[x_{0}, x_{0}+\eta\right]} & \text { otherwise }\end{cases}
$$

Why do you think we chose η in this way? By construction, $I \subset[a, b]$ and

$$
f\left(x_{0}\right)+\left(f(x)-f\left(x_{0}\right)\right) \geq f(x)-\left|f(x)-f\left(x_{0}\right)\right|>\frac{f\left(x_{0}\right)}{2}
$$

for all $x \in I$. Define

$$
f_{1}(x)=\left\{\begin{array}{ll}
f(x), & x \in I, \\
0, & x \notin I .
\end{array} \quad f_{2}(x)= \begin{cases}f(x), & x \notin I, \\
0, & x \in I .\end{cases}\right.
$$

These two function are non-negative, bounded and continuous possibly at every point (where do you think it could be discontinuous?), which means that they are both Riemann-integrable. We know

$$
\int_{a}^{b} f_{1}(x) d x \geq \eta \frac{\epsilon}{2}
$$

and

$$
\int_{a}^{b} f_{2}(x) d x \geq 0
$$

So that,

$$
\int_{a}^{b} f(x) d x>0
$$

leading to a contradiction. To see the last inequality you might want to express f as a sum of the two functions we constructed.
7. (6.3): Define three functions $\beta_{1}, \beta_{2}, \beta_{3}$ as follows: $\beta_{j}(x)=0$ if $x<0, \beta_{j}(x)=1$ if $x>0$ for all j; and $\beta_{1}(0)=0, \beta_{2}(0)=1, \beta_{3}(0)=\frac{1}{2}$. Let f be a bounded function on $[-1,1]$.
(a) Prove that $f \in \mathcal{R}\left(\beta_{1}\right)$ if and only if $f(0+)=f(0)$ and that then

$$
\int f d \beta_{1}=f(0)
$$

(b) State and prove a similar result for β_{2}.
(c) Prove that $f \in \mathcal{R}\left(\beta_{3}\right)$ if and only if f is continuous at 0 .
(d) If f is continuous at 0 prove that

$$
\int f d \beta_{1}=\int f d \beta_{2}=\int f d \beta_{3}=f(0)
$$

Proof. Let $t_{0}<t_{1}<\cdots<t_{n}$ be a partition of any interval containing 0 , and without loss of generality assume that $t_{k}=0$ for some $k \leq n$ (why can I do this?). With this our Riemann-Stieltjes sums (upper and lower) are: for $j=1, M_{k}$ and m_{k}; for $j=2$ they will be M_{k-1}, and m_{k-1}; and for $j=3$ they will be $\frac{M_{k-1}+M_{k-2}}{2}$ and $\frac{m_{k-1}+m_{k}}{2}$, respectively.
(a) By definition we have that $m_{k} \leq f(x) \leq M_{k}$ for every $x \in\left[0, t_{k+1}\right]$. That means that the sets of upper and lower sums are arbitrarily near to each other if and only if $M_{k}-m_{k}<\epsilon$. If such partition exists let $\delta=t_{k+1}$. Then

$$
|f(x)-f(0)| \leq M_{k}-m_{k}<\epsilon
$$

for $x \in(0, \delta)$, which implies

$$
\lim _{x \rightarrow 0+} f(x)=f(0)
$$

Conversely, if $\lim _{x \rightarrow 0+} f(x)=f(0)$ then we know there is a $\delta>0$ such that $|f(x)-f(0)|<\epsilon$ for every $|x|<\delta$. Take a partition where $t_{k}=0$ and $t_{k+1}=\delta$. Notice that by what we just showed we proved that the Riemann sums differ from $f(0)$ by less than ϵ (why?) and so

$$
\int f d \beta_{1}=f(0)
$$

(b) Notice $f \in \mathcal{R}\left(\beta_{2}\right)$ if and only if $\lim _{x \rightarrow 0-} f(x)=f(0)$. If this holds, then $\int f d \beta_{2}=$ $f(0)$. The proof is almost identical to the one in the last item.
(c) In this case our Riemann-Stieltjes sum differ by

$$
\frac{\left(M_{k}-m_{k}\right)+\left(M_{k-1}-m_{k-1}\right)}{2}
$$

Let $\epsilon>0$, there is a partition containing 0 for which this difference is less than $\frac{\epsilon}{2}$. Let $\delta=\min \left(t_{k+1}-t_{k-1}\right)$. Then, for $x \in(-\delta, \delta)$ we have

$$
\begin{aligned}
|f(x)-f(0)| & \leq \max \left(\frac{M_{k}-m_{k}}{2}, \frac{M_{k-1}-m_{k-1}}{2}\right) \\
& \leq M_{k}-m_{k}+M_{k-1}-m_{k-1}<\epsilon
\end{aligned}
$$

showing that f is continuous at 0 . As before,

$$
\int f d \beta_{3}=f(0)
$$

(d) It follows from the last three items.
8. (6.4): If $f(x)=0$ for all irrational $x, f(x)=1$ for all rational x, prove that $f \notin \mathcal{R}$ on $[a, b]$ for any $a<b$.

Proof. Every upper Riemann sum equals $b-a$, and every lower Riemann sum equals 0 . why is this enough?

Disclaimer: Some of these solutions have been taken from some outside sources, which will not be cited so that students do not find them. If you are interested in knowing where I got the solutions from please e-mail me.

