Activities

Activity: Existence and Uniqueness of Solutions to O.D.E.'s II: Existence.

For the following problems fill in the gaps on the proof, they are highlighted in blue. Any comment in brown shall be discussed with your classmates and resolved as a group.

1. Suppose ϕ is a continuous bounded real function in the strip defined by $0 \le x \le 1, -\infty < y < \infty$. Prove that the initial-valued problem

$$y' = \phi(x, y), \qquad \qquad y(0) = c$$

has a solution.

Compare the hypothesis of this problem with the hypothesis of Activity 2.

Hint: Fix *n*. For $i = 0, \dots, n$, put $x_i = \frac{i}{n}$. Let f_n be a continuous function on [0, 1] such that $f_n(0) = c$,

$$f'_n(t) = \phi(x_i, f_n(x_i));$$
 $x_i < t < x_{i+1},$

and put

$$\Delta_n(t) = f'_n(t) - \phi\left(t, f_n(t)\right),$$

except at the points x_i , where $\Delta_n(t) = 0$. Then

$$f_n(x) = c + \int_0^x \left[\phi\left(t, f_n(t)\right) + \Delta_n(t)\right].$$

Choose $M < \infty$ so that $|\phi| \leq M$. Verify the following assertions.

- (a) $|f'_n| \le M, |\Delta_n| \le 2M, \Delta_n \in \mathcal{R}$, and $|f_n| \le |c| + M = M_1$, say, on [0, 1], for all *n*.
- (b) $\{f_n\}$ is equicontinuous on [0, 1], since $|f'_n| \leq M$.
- (c) Some $\{f_{n_k}\}$ converges to some f, uniformly on [0, 1].
- (d) Since ϕ is uniformly continuous on the rectangle $0 \le x \le 1, |y| \le M_1$,

$$\phi\left(t, f_{n_k}(t)\right) \to \phi\left(t, f(t)\right)$$

uniformly on [0, 1].

(e) $\Delta_n(t) \to 0$ uniformly on [0, 1], since

$$\Delta_n(t) = \phi\left(x_i, f_n(x_i)\right) - \phi\left(t, f_n(t)\right)$$

in (x_i, x_{i+1}) .

(f) Hence

$$f(x) = c + \int_0^x \phi(t, f(t)) dt.$$

This f is a solution of the given problem.

Proof. For a more general result we will assume that ϕ is a bounded continuous mapping from $[0,1] \times \mathbb{R}^k$ into \mathbb{R}^k and that $c \in \mathbb{R}^k$. Notice that under this assumptions we will have the necessary pieces to get the more general result stated in the next problem. Define $f_n(t) = c + t\phi(0,c)$ for $0 \le t \le x_1$, and then, by induction on i,

$$f_n(t) = f_n(x_i) + (t - x)\phi(x_i, f_n(x_i))$$

for $x_i < t \le x_{i+1}$. Confirm with your classmates that each f_n is a well defined function. By taking Δ_n as above, we get that

$$f'_n(t) = \Delta_n(t) + \phi(t, f_n(t))$$

except at a finite number of points, and therefore

$$f_n(x) = f_n(0) + \int_0^x \left[\phi(t, f_n(t)) + \Delta_n(t)\right] dt.$$

- (a) Prove what was asked for in the hint.
- (b) Prove what was asked for in the hint.
- (c) Prove what was asked for in the hint.
- (d) Prove what was asked for in the hint.
- (e) For each t and n let i(n) be chosen so that $t \in [x_{i(n)}, x_{i(n)+1}]$, so that $|t x_{i(n)}| \leq \frac{1}{n}$. Show that this, together with $f_{n_k} \to f$ uniformly implies

$$\phi\left(x_{i(n)}, f_n(x_{i(n)})\right) - \phi\left(t, f_n(t)\right) \to 0.$$

(f) Prove what was asked for in the hint.

- 2. Prove an analogous existence theorem for the initial-value problem

$$\mathbf{y}' = \Phi(x, \mathbf{y}), \qquad \qquad \mathbf{y}(0) = \mathbf{c},$$

where now $\mathbf{c} \in \mathbb{R}^k$, $\mathbf{y} \in \mathbb{R}^k$ and Φ is a continuous bounded mapping of the part of \mathbb{R}^{k+1} defined by $0 \le x \le 1, \mathbf{y} \in \mathbb{R}^k$ into \mathbb{R}^k .