Activities

Activity: Existence and Uniqueness of Solutions to O.D.E.'s II: Existence.

For the following problems fill in the gaps on the proof, they are highlighted in blue. Any comment in brown shall be discussed with your classmates and resolved as a group.

1. Suppose ϕ is a continuous bounded real function in the strip defined by $0 \leq x \leq$ $1,-\infty<y<\infty$. Prove that the initial-valued problem

$$
y^{\prime}=\phi(x, y), \quad y(0)=c
$$

has a solution.

Compare the hypothesis of this problem with the hypothesis of Activity 2.

Hint:Fix n. For $i=0, \cdots, n$, put $x_{i}=\frac{i}{n}$. Let f_{n} be a continuous function on $[0,1]$ such that $f_{n}(0)=c$,

$$
f_{n}^{\prime}(t)=\phi\left(x_{i}, f_{n}\left(x_{i}\right)\right) ; \quad x_{i}<t<x_{i+1}
$$

and put

$$
\Delta_{n}(t)=f_{n}^{\prime}(t)-\phi\left(t, f_{n}(t)\right),
$$

except at the points x_{i}, where $\Delta_{n}(t)=0$. Then

$$
f_{n}(x)=c+\int_{0}^{x}\left[\phi\left(t, f_{n}(t)\right)+\Delta_{n}(t)\right] .
$$

Choose $M<\infty$ so that $|\phi| \leq M$. Verify the following assertions.
(a) $\left|f_{n}^{\prime}\right| \leq M,\left|\Delta_{n}\right| \leq 2 M, \Delta_{n} \in \mathcal{R}$, and $\left|f_{n}\right| \leq|c|+M=M_{1}$, say, on $[0,1]$, for all n.
(b) $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$, since $\left|f_{n}^{\prime}\right| \leq M$.
(c) Some $\left\{f_{n_{k}}\right\}$ converges to some f, uniformly on $[0,1]$.
(d) Since ϕ is uniformly continuous on the rectangle $0 \leq x \leq 1,|y| \leq M_{1}$,

$$
\phi\left(t, f_{n_{k}}(t)\right) \rightarrow \phi(t, f(t))
$$

uniformly on $[0,1]$.
(e) $\Delta_{n}(t) \rightarrow 0$ uniformly on $[0,1]$, since

$$
\Delta_{n}(t)=\phi\left(x_{i}, f_{n}\left(x_{i}\right)\right)-\phi\left(t, f_{n}(t)\right)
$$

in $\left(x_{i}, x_{i+1}\right)$.
(f) Hence

$$
f(x)=c+\int_{0}^{x} \phi(t, f(t)) d t
$$

This f is a solution of the given problem.

Proof. For a more general result we will assume that ϕ is a bounded continuous mapping from $[0,1] \times \mathbb{R}^{k}$ into \mathbb{R}^{k} and that $c \in \mathbb{R}^{k}$. Notice that under this assumptions we will have the necessary pieces to get the more general result stated in the next problem. Define $f_{n}(t)=c+t \phi(0, c)$ for $0 \leq t \leq x_{1}$, and then, by induction on i,

$$
f_{n}(t)=f_{n}\left(x_{i}\right)+(t-x) \phi\left(x_{i}, f_{n}\left(x_{i}\right)\right)
$$

for $x_{i}<t \leq x_{i+1}$. Confirm with your classmates that each f_{n} is a well defined function. By taking Δ_{n} as above, we get that

$$
f_{n}^{\prime}(t)=\Delta_{n}(t)+\phi\left(t, f_{n}(t)\right)
$$

except at a finite number of points, and therefore

$$
f_{n}(x)=f_{n}(0)+\int_{0}^{x}\left[\phi\left(t, f_{n}(t)\right)+\Delta_{n}(t)\right] d t
$$

(a) Prove what was asked for in the hint.
(b) Prove what was asked for in the hint.
(c) Prove what was asked for in the hint.
(d) Prove what was asked for in the hint.
(e) For each t and n let $i(n)$ be chosen so that $t \in\left[x_{i(n)}, x_{i(n)+1}\right]$, so that $\left|t-x_{i(n)}\right| \leq \frac{1}{n}$. Show that this, together with $f_{n_{k}} \rightarrow f$ uniformly implies

$$
\phi\left(x_{i(n)}, f_{n}\left(x_{i(n)}\right)\right)-\phi\left(t, f_{n}(t)\right) \rightarrow 0 .
$$

(f) Prove what was asked for in the hint.
2. Prove an analogous existence theorem for the initial-value problem

$$
\mathbf{y}^{\prime}=\Phi(x, \mathbf{y}), \quad \mathbf{y}(0)=\mathbf{c},
$$

where now $\mathbf{c} \in \mathbb{R}^{k}, \mathbf{y} \in \mathbb{R}^{k}$ and Φ is a continuous bounded mapping of the part of \mathbb{R}^{k+1} defined by $0 \leq x \leq 1, y \in \mathbb{R}^{k}$ into \mathbb{R}^{k}.

