Outlines

Homework 3

1. (6.5) Suppose f is a bounded real function on $[a, b]$ and $f^{2} \in \mathcal{R}$ on $[a, b]$. Does it follow that $f \in \mathcal{R}$? Does the answer change if we assume that $f^{3} \in \mathcal{R}$?

Proof. Consider

$$
f_{1}= \begin{cases}1, & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q}\end{cases}
$$

This function is not in \mathcal{R} but f^{2} is (check this). By Theorem 6.11 it is true that $f^{3} \in \mathcal{R}$, why didn't the same argument hold for the last part of the problem?
2. (6.7) Suppose f is a real function on $[0,1]$ and $f \in \mathcal{R}$ on $[c, 1]$ for every $c>0$. Define

$$
\int_{0}^{1} f(x) d x=\lim _{c \rightarrow 0+} \int_{0}^{1} f(x) d x
$$

if this limit exists (and is finite).
(a) If $f \in \mathcal{R}$ on $[0,1]$ show that this definition of the integral agrees with the old one.
(b) Construct a function f such that the above limit exists, although it fails to exist with $|f|$ in place of f.

Proof. (a) Suppose $f \in \mathcal{R}$ on $[0,1]$. Let $\epsilon>0$ be given, and let $M=\sup \{|f(x)|: 0 \leq$ $x \leq 1\}$. Let $c \in\left(0, \frac{\epsilon}{4 M}\right]$ be fixed, and consider any partition P of $[0,1]$ containing c for which the upper and lower sums $\sum M_{j} \Delta t_{j}$ and $\sum m_{j} \Delta t_{j}$ of f differ by less than $\frac{\epsilon}{4}$. Taking the partition of $[c, 1]$ formed by the elements in the partition P that lie in $[c, 1]$ we have a partition for which the difference of the upper and lower sums differ by $\frac{\epsilon}{4}$. We just prove that for $c<\frac{\epsilon}{4}$ and a suitable partition containing c where

$$
\sum M_{j} \Delta t_{j}-\frac{\epsilon}{4}<\int_{0}^{1} f d x \leq \sum m_{j} \Delta t_{j}
$$

we have

$$
\sum_{t_{j} \geq c} M_{j}^{\prime} \Delta t_{j}-\frac{\epsilon}{4}<\int_{0}^{1} f d x \leq \sum_{t_{j} \geq c} m_{j}^{\prime} \Delta t_{j} .
$$

This also tells us that

$$
\left|\sum M_{j} \Delta t_{j}-\sum_{t_{j} \geq c} M_{j}^{\prime} \Delta t_{j}\right|<\frac{\epsilon}{4}
$$

and

$$
\left|\sum m_{j} \Delta t_{j}-\sum_{t_{j} \geq c} m_{j}^{\prime} \Delta t_{j}\right|<\frac{\epsilon}{4}
$$

so that

$$
\left|\int_{0}^{1} f d x-\int_{c}^{1} f d x\right|<\epsilon
$$

if $0<c<\frac{\epsilon}{4}$.
(b) Consider $f(x)=(-1)^{n}(n+1)$.
3. (6.8) Supppose $f \in \mathcal{R}$ on $[a, b]$ for every $b>a$, where a is fixed. Define

$$
\int_{a}^{\infty} f(x) d x=\lim _{x \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

if this limit exists (and is finite). In that case, we say that the integral on the left converges. If it also converges after f has been replaced by $|f|$, it is said to converge absolutely. Assume that $f \geq 0$ and that f decreases monotonically on $[1, \infty)$. Prove that

$$
\int_{1}^{\infty} f(x) d x
$$

converges if and only if

$$
\sum_{n=1}^{\infty} f(n)
$$

converges.
Proof. It is enough tocheck that

$$
-f(0)+\sum_{k=1}^{n} f(k) \leq \int_{1}^{n} f(x) d x \leq \sum_{k=1}^{n-1} f(x)
$$

Why is this enough?
Disclaimer: Some of these solutions have been taken from some outside sources, which will not be cited so that students do not find them. If you are interested in knowing where I got the solutions from please e-mail me.

